

CH7521A 4 Lane DisplayPort to 6 Channel LVDS Controller

FEATURES

General

- Compliant with DisplayPort specification version 1.2 and Embedded DisplayPort (eDP) specification version 1.2
- Support VESA and CEA timing standards up to 7680x1080@60Hz or 4800x2160@60Hz with 8/10 bit graphic color depth
- Support Single Port, Dual Ports, Quad ports and Six ports LVDS output interface
- Crystal Free
- Built in self test mode support
- Hot Plug Detection
- Support dithering from 10 bit to 8 bit and 8-bit+ FRC
- Region CRC checking support
- Black panel or Color Bar during invalid input and failure detection
- 15-pixel overlap on the Left and Right sides support, and enabled by the internal register
- Initiated and controlled by firmware which is loaded from External BOOT ROM automatically upon power up
- integrated EDID Buffer up to 2 blocks
- Firmware updated through I2C slave or AUX Channel
- I2C slave support up to 400K Hz
- Programmable power management
- Achieve bit error rate $<10^{-9}$ for raw transport data per lane and symbol error rate <10-12 for control data
- Low power consumption
- ESD HBM 4KV
- Offered in a 128-pin QFN package (12.5 x 12.5mm)

DP Receiver

- Compliant with DisplayPort Specification version 1.2 and Embedded DisplayPort (eDP) Specification version 1.2
- Support 4 Main Link Lanes at 1.62Gb/s, 2.7Gb/s or 5.4Gb/s link rate
- Supports input color depth 6, 8 or 10-bit per pixel in RGB format
- Supports Flexible Lane swap and P/N signal polarity swap on the Main Link Lanes and the AUX channel
- Supports Enhanced Framing Mode
- Support dynamic refresh rate or adaptive sync mode
- Fast and full Link Training for DisplayPort system
- Support eDP Authentication: Alternative Scramble Seed Reset and Alternative Framing
- Support typical 0.5% down spread spectrum clock(SSC) DP input

LVDS Transmitter

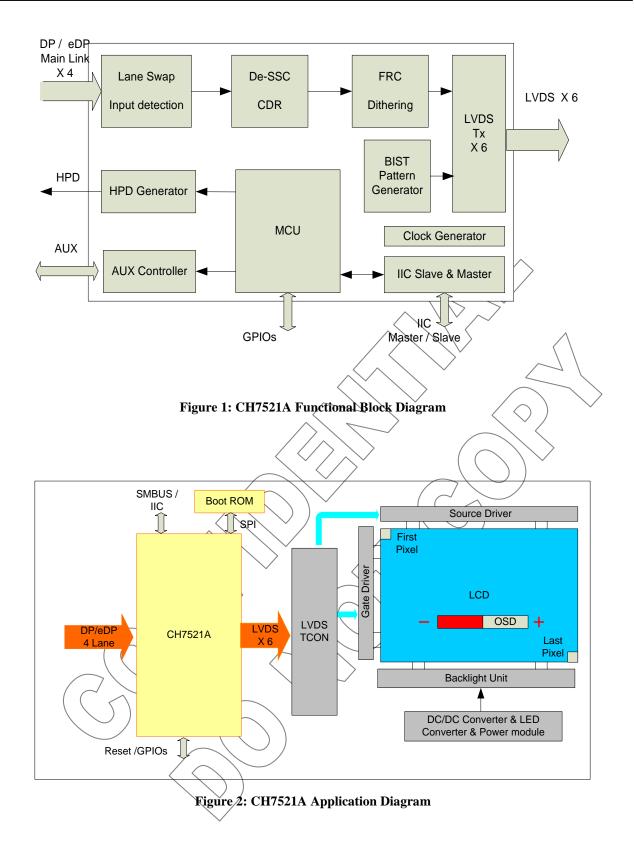
Support Single Port, Dual Ports, Quad ports and Six

GENERAL DESCRIPTION

Chrontel's CH7521A is a low-cost, low-power semiconductor device that translates the DisplayPort signal to the LVDS in form of RGB. This innovative DisplayPort receiver with integrated 6 channel LVDS transmitters is specially designed to target the Pro-AV and Automotive market segments. Leveraging the DisplayPort's unique source/sink "Link Training" routine, the CH7521A is capable of instantly bring up the video display to the LCD when the initialization process is completed between CH7521A and the graphic chip.

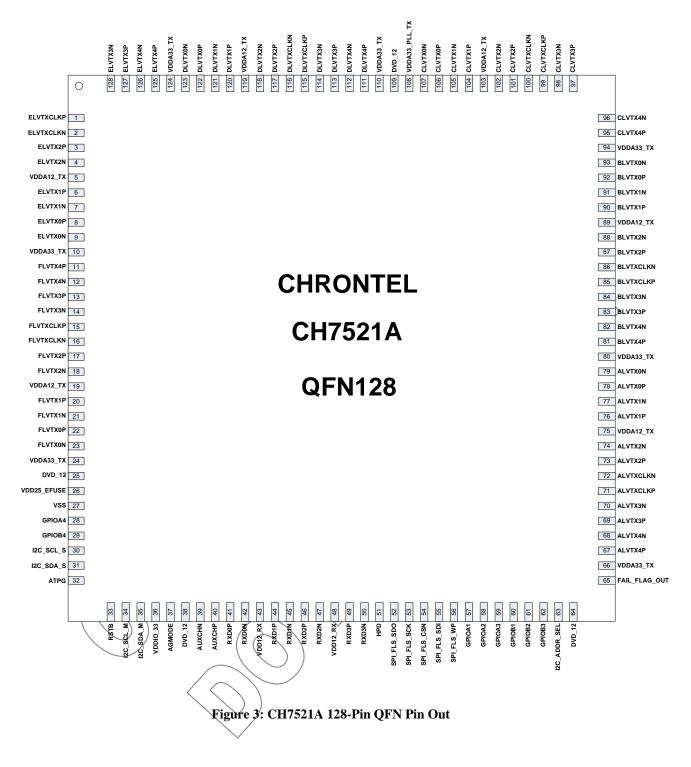
The CH7521A is designed to meet the DisplayPort specification version 1.2 and the Embedded DisplayPort Specification version 1.2. The 4 Main Link Lanes receiver supports input with data rate running at 1.62Gb/s, 2.7Gb/s or 5.4Gb/s, and can accept digital RGB signal for LVDS output up to 7680x1080@60Hz or 4800x2160@60Hz.

The CH7521A will convert the DisplayPort signal to LVDS output after DisplayPort Link Training is completed. This feature can be achieved by loading the panel's EDID and the CH7521A's configuration settings in the serial external BOOT ROM connected to the CH7521A. During system power-up and upon completion of the DisplayPort Link Training through AUX Channel, CH7521A will generate LVDS signal according to the panel power-up timing sequencing stored in the external BOOT ROM.


Advanced Region CRC checking and signal failure detection module and the related interrupt mechanism is incorporated in CH7521A, which is specially designed to reduce the risk of signal transmission error in normal consumer or industrial operation.

ports LVDS output interface with 6/8/10 bit color depth

- Single LVDS port supports up to 140MHz pixel clock frequency
- Support 3 sets TDDI/DDIC Connection with dual LVDS ports for each set, and 4 sets TDDI/DDIC Connection with single LVDS port for each set
- Support both OpenLDI (or JEIDA), SPWG (or VESA) and non-JEITA (10-bit only) bit mapping for LVDS application
- LVDS Tx FFE support up to 3 dB Gain
- Flexible LVDS Port Assignment support
- Flexible LVDS output pins swapping
- Spread spectrum control is available for transmitting LVDS signal
- Signal pre-emphasis is programmable for the transmitting LVDS signal, as well as the driver current
- Programmable LVDS Swing and Common Voltage

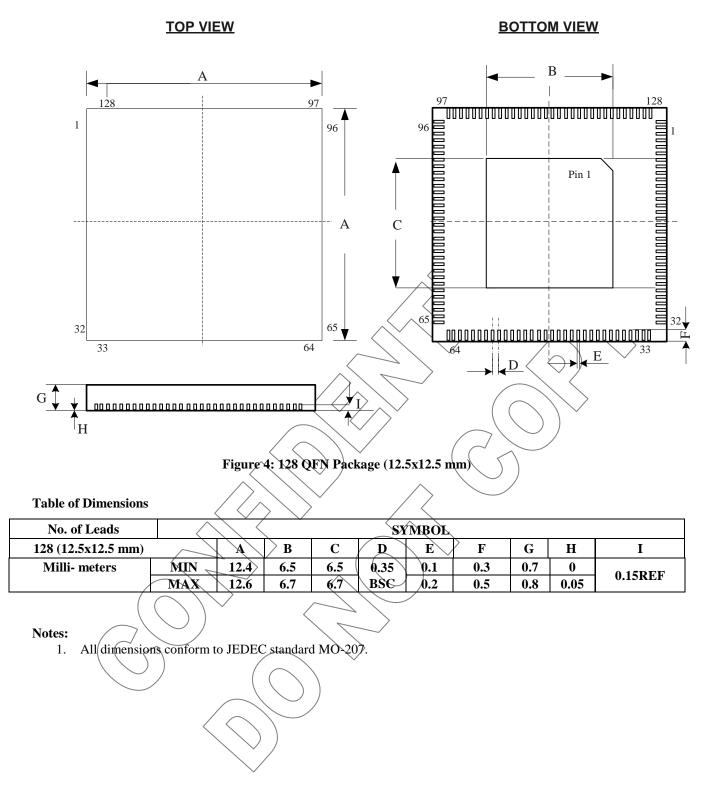

APPLICATION

- AIO
- Pro-AV system
- LED Display Device
- Automotive

1.0 PIN-OUT

1.1 Package Diagram

1.2 Pin Description


Table 1: CH7521A Pin Description

Pin #	Туре	Symbol	Description
1~4,6~9,125	Out	ELVTX[4:0],	The Fifth Channel LVDS Output
~128		ELVTXCLKP/N	•
11~18,20~23	Out	FLVTX[4:0],	The Sixth Channel LVDS Output
		FLVTXCLKP/N	
67~74,76~79	Out	ALVTX[4:0] P/N,	The First Channel LVDS Output
	-	ALVTXCLKP/N	
81~88,90~93	Out	BLVTX[4:0],	The Second Channel LVDS Output
05 102 104	0	BLVTXCLKP/N	
95~102,104~ 107	Out	CLVTX[4:0], CLVTXCLKP/N	The Third Channel LVDS Output
111~118,120	Out	DLVTX[4:0],	The Fourth Channel LVDS Output
~123	Out	DLVTXCLKP/N	
	In/Out	GPIOA[4:1]	General Purpose Input/Output
29,60~62	In/Out	GPIOB[4:1]	General Purpose Input/Output
30	In	I2C_SCL_S	Serial Port Clock Input for CH7521A UC Slave
20		120_501_5	This pin functions as the clock input of the serial port and operates with
			inputs from 0 to 3.3%. This pin requires an external $4k\Omega^2$ 9k Ω pull up
			resistor to 3.3V.
31	In/Out	I2C_SDA_S	Serial Port Data Input / Output for CH7521A IC Slave
			This pin functions as the bi-directional data pin of the serial port and
			operates with inputs from 0 to 3.3V. Outputs are driven from 0 to 3.3V.
20			This pin requires an external $4k\Omega - 9 k\Omega$ pull up resistor to 3.3V.
32		ATPG	Test Pin
33	In	RSTB	Reset* Input (Internal pull-up)
			When this pin is pull low, the device is held in the power-on reset
			condition. When this pin is pull high, reset is controlled through the serial port register.
34	Out	I2C_SCL_M	Serial Port Clock Output for EDID/HDCP ROM
51	Out		This pin functions as the clock output of the serial port and operates with
			output from 0 to 3,3V. This pin requires an external $4k\Omega - 9k\Omega$ pull up
		$ \longrightarrow / $	resistor to 3.3V.
35	In/Out	I2C_SDA_M	Serial Port Data Input/Qutput for EDID/HDCP ROM
			This pin functions as the bi-directional data pin of the serial port and
	($\frown \lor$	operates with inputs from 0 to 3.3V. Outputs are driven from 0 to 3.3V.
27			This pin requires an external $4k\Omega - 9 k\Omega$ pull up resistor to 3.3V.
37	In 7	AGMODE	Aging Pattern Selection AGMODE=H: and no video in: BIST pattern
	$\left(\right)$		AGMQDE=L: and no video in: black pattern (default)
39,40	In/Qut	AUXCHP/N	Aux Channel Differential Input/Output
			These two pins are DisplayPort AUX Channel control, which supports a
			half-duplex, bi-directional AC-coupled differential signal.
41,42,44~47,	In	RXD[3:0(P/N	DisplayPort Lane 0~3 Input
49,50		\sim	One pair of differential data input. It handles clock-embedded high speed
<i>E</i> 1	Q (differential data input as DisplayPort standard
51	Out	HPD 🗸	Hot Plug Detect This output pin indicates whether this device is active or not. It also
			generates interrupt pulse as defined by DisplayPort standard. Output
			voltage is 3.3v.
52~56	In/Out	SPI_FLS_WP	SPI interface for Boot ROM
		SPI_FLS_SDI	
I		SPI_FLS _CSN	

		SPI_FLS _SCK SPI_FLS _SDO	
63	In	I2C_ADDR_SEL	IIC Slave Address Selection
65	Out	FAIL_FLAG_OUT	Fail Flag Output
36	Power	VDDIO_33	Digital I/O Power Supply (3.3V)
25,38,64,109	Power	DVD_12	Digital Power Supply (1.25V)
43,48	Power	VDD12_RX	DP Rx Power Supply (1.25V)
10,24,66,80,9 4,110,124	Power	VDDA33_TX	LVDS Power Supply (3.3V)
5,19,75,89,10 3,119	Power	VDDA12_TX	LVDS Analog Power Supply (1.25V)
108	Power	VDDA33_PLL_TX	LVDS PLL Power Supply (3.3V)
26	Power	VDD25_EFUSE	Internal Trimming Module Power Supply(2.5V)
26, E-PAD	Power	VSS	Ground

 \bigcirc

2.0 PACKAGE DIMENSIONS

Disclaimer

This document provides technical information for the user. Chrontel reserves the right to make changes at any time without notice to improve and supply the best possible product and is not responsible and does not assume any liability for misapplication or use outside the limits specified in this document. CHRONTEL warrants each part to be free from defects in material and workmanship for a period of one (1) year from date of shipment. Chrontel assumes no liability for errors contained within this document. The customer should make sure that they have the most recent data sheet version. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Chrontel, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

Chrontel PRODUCTS ARE NOT AUTHORIZED FOR AND SHOULD NOT BE USED WITHIN LIFE SUPPORT SYSTEMS OR NUCLEAR FACILITY APPLICATIONS WITHOUT THE SPECIFIC WRITTEN CONSENT OF Chrontel. Life support systems are those intended to support or sustain life and whose failure to perform when used as directed can reasonably expect to result in personal injury or death.

			$\langle \rangle$
	ORDER		
Part Number	Package Type	Operating Temperature Range	Minimum Order Quantity
CH7521A-BF	128 QFN, Lead-free	Commercial: 0 to 70°C	90/Tray
CH7521A-BFI	128 QFN, Lead-free	Industrial: -40 to 85°C	90/Tray
	$\langle \rangle \rangle$	hrontel	
	F-mail· o	sales@chrontel.com	

E-mail: sales@chrontel.com